Striatus Bridge / Zaha Hadid Architects + Block Research Group

Striatus Bridge / Zaha Hadid Architects + Block Research Group - Exterior Photography, StairsStriatus Bridge / Zaha Hadid Architects + Block Research Group - Interior PhotographyStriatus Bridge / Zaha Hadid Architects + Block Research Group - Interior PhotographyStriatus Bridge / Zaha Hadid Architects + Block Research Group - Exterior Photography, StairsStriatus Bridge / Zaha Hadid Architects + Block Research Group - More Images+ 25

  • Design (Zhacode): Jianfei Chu, Vishu Bhooshan, Henry David Louth, Shajay Bhooshan, Patrik Schumacher
  • Design Team (Eth Brg): Tom Van Mele, Alessandro Dell’Endice, Philippe Block
  • Structural Engineering: Tom Van Mele, Alessandro Dell’Endice, Sam Bouten, Philippe Block
  • Collaborators: Holcim, incremental3D
  • Fabrication Design (Eth Brg): Shajay Bhooshan, Alessandro Dell’Endice, Sam Bouten, Chaoyu Du, Tom Van Mele
  • Fabrication Design (Zhacode): Vishu Bhooshan, Philip Singer, Tommaso Casucci
  • 3 D Printing: Johannes Megens, Georg Grasser, Sandro Sanin, Nikolas Janitsch, Janos Mohacsi
  • Concrete Specialist: Benito Carrion, Jose Manuel Arnau
  • Assembly Construction: Alessandro Dell’Endice, Tom Van Mele
  • Logistics: Alessandro Dell’Endice, Tom Van Mele, Michele Alverdi, Ricardo de Pablos, José Luis Romero
  • Formwork Engineer: Ackermann GmbH
  • Steel Structure: Pletscher
  • Laser Engraving/Artwork/Advertisement Sign: ZB Laser
  • Measurements: L2F Architettura
  • City: Venezia
  • Country: Italy
More SpecsLess Specs
Striatus Bridge / Zaha Hadid Architects + Block Research Group - Interior Photography
© naaro

Text description provided by the architects. Striatus is an arched, unreinforced masonry footbridge composed of 3D-printed concrete blocks assembled without mortar. Exhibited at the Giardini della Marinaressa during the Venice Architecture Biennale until November 2021, the 16x12-metre footbridge is the first of its kind, combining traditional techniques of master builders with advanced computational design, engineering, and robotic manufacturing technologies.

Striatus Bridge / Zaha Hadid Architects + Block Research Group - Exterior Photography, Stairs
© naaro
Striatus Bridge / Zaha Hadid Architects + Block Research Group - Exterior Photography
© naaro

The name “Striatus” reflects its structural logic and fabrication process. Concrete is printed in layers orthogonal to the main structural forces to create a “striated” compression-only funicular structure that requires no reinforcement. 

Striatus Bridge / Zaha Hadid Architects + Block Research Group - Exterior Photography
© Alessandro Dell'Endice

3D printing can be used to build load-bearing concrete structures that require significantly less material and no steel reinforcement or mortar. ETH architects and engineers from the Block Research Group in collaboration with Zaha Hadid Architects and other partners from the industry showed how this works with a footbridge in Venice.

Striatus Bridge / Zaha Hadid Architects + Block Research Group - Exterior Photography, Stairs
© naaro

Millions of new buildings all over the world are being constructed with reinforced concrete, even though this type of construction generates large amounts of CO2 emissions. The steel used for the reinforcement and the cement for the concrete is especially problematic in this regard. ETH researchers have now presented a way to reduce both, in a real project.

Striatus Bridge / Zaha Hadid Architects + Block Research Group - Exterior Photography, Stairs
© naaro
Striatus Bridge / Zaha Hadid Architects + Block Research Group - Image 25 of 30
Plan
Striatus Bridge / Zaha Hadid Architects + Block Research Group - Exterior Photography
© naaro

The Block Research Group teamed up with the Computation and Design Group at Zaha Hadid Architects to build a 12-by-16-metre arched footbridge in a park in Venice – entirely without reinforcement.

Using an additive process, the construction dubbed “Striatus” was built with concrete blocks that form an arch much like traditional masonry bridges. This compression-only structure allows the forces to travel to the footings, which are tied together on the ground. The dry-assembled construction is stable due to its geometry only.

Striatus Bridge / Zaha Hadid Architects + Block Research Group - Interior Photography
© in3d
Striatus Bridge / Zaha Hadid Architects + Block Research Group - Interior Photography
© Tom van Mele
Striatus Bridge / Zaha Hadid Architects + Block Research Group - Exterior Photography
© Tom van Mele

What is completely new is the type of 3D-printed concrete, which the researchers developed together with the company Incremental3D. The concrete is not applied horizontally in the usual way but instead at specific angles such that they are orthogonal to the flow of compressive forces. This keeps the printed layers in the blocks nicely pressed together, without the need for reinforcement or post-tensioning. The special concrete ink for the 3D printer was developed by the company Holcim precisely for this purpose.

Striatus Bridge / Zaha Hadid Architects + Block Research Group - Image 27 of 30
Elevation B

ETH professor Philippe Block said: “This precise method of 3D concrete printing allows us to combine the principles of traditional vaulted construction with digital concrete fabrication to use material only where it is structurally necessary without producing waste.”

Striatus Bridge / Zaha Hadid Architects + Block Research Group - Interior Photography, Facade
© naaro

Because the construction does not need mortar, the blocks can be dismantled, and the bridge reassembled again at a different location. If the construction is no longer needed, the materials can simply be separated and recycled.

Striatus Bridge / Zaha Hadid Architects + Block Research Group - Interior Photography
© in3d
Striatus Bridge / Zaha Hadid Architects + Block Research Group - Interior Photography
© Tom van Mele

Project gallery

See allShow less

Project location

Address:Giardino della Marinaressa, Riva dei Sette Martiri, 30122 Venezia VE, Italy

Click to open map
Location to be used only as a reference. It could indicate city/country but not exact address.
About this office
Cite: "Striatus Bridge / Zaha Hadid Architects + Block Research Group" 17 Nov 2023. ArchDaily. Accessed . <https://www.archdaily.com/965324/striatus-bridge-zaha-hadid-architects-plus-block-research-group> ISSN 0719-8884

© naaro

Striatus 桥 / Zaha Hadid Architects + Block Research Group

You've started following your first account!

Did you know?

You'll now receive updates based on what you follow! Personalize your stream and start following your favorite authors, offices and users.